THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

1/2C

PHYSICS 2C ALTERNATIVE C PRACTICAL

(For both School and Private Candidates)

me: 2:30 Hours

Friday, 22nd October 2010 a.m.

Instructions

- 1. This paper consists of three (3) questions.
- 2. Answer two (2) questions including question number 1.
- 3. Whenever calculations are involved show your work clearly.
- 3. Marks for questions are indicated at the end of each question.
- 4. Calculators and cellular phones are **not** allowed in the examination room.
- 6. Write your **Examination number** on every page of your answer booklet(s).

Take $\pi = 3.14$

This paper consists of 4 printed pages.

1. The aim of the experiment in Figure 1 is to verify Hooke's Law using a spring. Proceed as follows.

Set up the apparatus as shown in Figure 1. Record the length $L_{\rm o}$ indicated by the pointer w no mass on the scale pan. Place a 50g mass on the pan and record the new length L.

Repeat this procedure for M = 100g, 150g, 200g and 250 each time measuring t corresponding length L.

Tabulate your results as follows: Initial length Lo =

Mass m (g)	Force F (N)	Length L (cm)	Extension
			e = L - Lo (cm)
20			
40			
60			
80			
100			

- (i) Complete the table.
- Plot a graph of force against extension e. (ii)
- What are the values of the intercepts? (iii)
- What is the nature of the graph? Explain the relationship between force and extension (iv)
- Mention the sources of errors. (v)

(25 marks)

The aim of the experiment is to determine the critical angle A of a given glass block. Proceed as follows:

- (a) Place the glass block on a white sheet of paper and trace its figure ABCD (Figure 2). Remove the block. Mark the centre M of face AB and draw a normal through M to a point N on the line CD.
- (b) Draw lines to M at angles of 30°, 40°, 60°, 70° and 80° which acts as incident rays.

Erect two pins P_1 and P_2 on the 30° line. Return the block to its original position and stick pins P_3 and P_4 on the opposite side such that they appear to be in a straight line with P_1 and P_2 when viewed through side CD. Remove the glass block and trace the straight path taken by ray OP_3P_4 . Using a ruler join O and M. Measure the angle of refraction r and calculate the values cos i and sin r.

- (c) Repeat the procedure in (b) above for $i = 40^{\circ}$, 50° , 60° , 70° and 80° each time measure the corresponding angle of refraction r.
- (d) Tabulate your results for i, r, cos i and sir r.
 - (i) Plot a graph of sin r (vertical axis) against cos i (horizontal axis).
 - (ii) Determine the slope M of your graph.
 - (iii) Calculate the value of A when slope = $\sin A$.
 - (iv) State the sources of errors. (25 marks)

3. You are required to determine the resistance P of a wire using the metre bridge. Proceed as follows.

Connect the circuit as shown in Figure 3. Q is a standard resistor of resistance 2Ω . Close the switch k and find the balance point. Read and record lengths L_1 and L_2 of AX and XI respectively.

Open the switch and interchange the resistors P and Q. Repeat the above experiment.

Tabulate your values as shown below.

Before interchange Expt. 1	Resistance Q (Ω)	Length L ₁ (cm)	Length L ₂ (cm)	$\frac{L_1}{L_2}$	$R_1 = \frac{L_1}{L_2} Q(\Omega)$
After the					I.
interchange Expt. 2					$R_2 = \frac{L_1}{L_2} Q(\Omega)$

- (i) Find the resistance R_1 of P.
- (ii) Find the resistance R_2 of P.
- (iii) Calculate the average value of resistances R_1 and R_2 of resistor P.
- (iv) What is the resistance of P?

(25 marks)